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ABSTRACT

The title problem is solved by using characteristic functions. The
force and moment due to 1atera1 translation of a rigid axisymmetric tank
are obtained. A mechanical model is also proposed. However, no
numerical example is given because of the considerable programming

effort required.
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NOTATIONS

radius of the contact circle of the liquid with the tank
contact curve of Fand W

equilibrium (mean) interface elevation

equilibrium (mean) interface or f/a.

(exact) interface

average interface height from origin (Fig. 1)
effective gravitational acceleration

wetted wall, r/a -G =0on W

interface perturbation

a reference length, say £ (Fig. 1) or £y

average liquid height from the center of the bottom
liquid mass, pVa3
outer normal

an interger

Bond number, pgaz/ﬂ'
pressure

equilibrium liquid pressure at origin (just below interface),
a constant

ullage pressure

equilibrium ullage pressure at origin (just about interface),
a constant

2
Pu,/ PWic2
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NOTATIONS (Cont'd)

magnitude of velocity

velocity vector

cylindrical coordinates

surface area nondimensionalized by a.2
time

contact curve of F, and W

surface tension force

velocity components along x, y, z
volume of the liquid divided by al
wetted wall bounded by F, ;'/a -W(R, 8)=0o0onW
exact wetted wall bounded by Fg

amplitude of tank displacement along x, y, z

x/a, z/a, respectively

hysteresis coefficient, Equation (28)

Kronecker delta

density difference between lower and upper fluid, p - p
interface elevation, f+ h

angle between no.rmal to ¥ and z-axis

the mean curvature, Equation (6)

principal curvatures

lower fluid density

density of ullage fluid (vapor or gas)

u
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NOTATIONS (Cont'd)

surface tension
frequency of oscillation

kth natural fre quency

pa3w2' /o, product of Bond number and frequency parameter

SUPERSCRIPTS AND SUBSCRIPTS

( ) at the vertex of the equilibrium interface (origin) .
( -)at the equilibrium contact point

the amplitude of { )

( )is a vector

{ )is a unit vector

( YonC

( ) related to center of gravity

( on F

( ) associated with cos(mB) circumferential mode

{ Yon T
( Jon W
( )on W,
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INTRODUCTION

The behavior and consequences of fuel sloshing in rockets under
a high effective gravity are recognized problems which have been quite
well understood (Refs. 1, 2, 3). The problem of low gravity fuel sloshing,
characterized by the significant role of interfacial tension, is now a sub-
ject of importance for application to coasting rockets or orbital stations.

The equilibrium behavior of fluids at zero and/or low gravify has
been studied in References 4 through 7. The theoreticavl determination
of an equilibrium interface ushape is nonlinear and requires a trial and
error procedure (Refs. 5, 6). Satterlee and Reynolds (Ref. 8) have
successfully solved the free sloshing problem in cylindrical containers
under low gravity and formulated a variational principle for this purpose.
More recently, Dodge and Garza (Ref. 9) performed experiments under
simulated low gravity conditions and predicted the sloshing forées for a
circular cylindrical tank under lateral excitation. An equivalent mechanical
model was also given.

For an "arbitrary'' tank under normal gravity, the fuel sloshing
problem has been investigated in References 10 through 13. | The object
of the present report is to predict forces exerted on an arbitrary axial

symmetric tank (rigid) subject to lateral excitation in a low gravity condition.




FORMULATION OF PROBLEM

Governing Equations

Assume the tank is undergoing translational oscillations.

momentum equations in a tank fixed coordinate system are

ou, Bu, B, ou
ot ox oy 0z

—:)— —Z—XE + AOQJZ cos (Nwt)

tut t vt twer = -~ 2B 4§ w2 cos (Not)
y

ow ow ow ow 1 9p , . 2
Bt +u8x +vaY +waz =3 8Z+zom cos(Nwt)-—j

The

Assume irrotational flow in the moving coordinates. There exists a

- velocity potential such that

Vé =g

The continuity and irrotationality equation yields

V26 =0

inside the liquid.
Integration of the momentum equation yields the unsteady

Bernoulli equation:




2,1 2 PRI . o

< S 2
% T3 - X w"x cos (Nuwt) - yyw®y cos (Nut)

- Eowzz cos(Nwt) + gz =0 (4)

At the interface, the pressure-difference curvature relation is (Lamb,

pp. 456 and 265)
P - Py =0k +K5) on F (5)

where the curvature is negative if the center of the curvature is at the

upper side. In cylindrical coordinates (Ref. 8, p. 25),

. e
K=K1+K2='{%% 2ar 27172
[1+(2)°+3@) ]
ot
/
2 06 [1’“(%%)2*%2(%)2:!1 2 |

The resultant interface dynamic condition from Equations (4), (5), and (6)

is then

9 1 1 9
- pf-ng-(pul-pl)-(ép)gé t o {;g

2 2q17z t
b +(2) (%) |

g
K 50

o0 2 211/2
) L&Y

-+ p§rowzy cos(Nuwt) + pEowZz cos{Nuwt) = 0 (7)

+ pXow x cos (Nut) +




Neglect flow in the upper fluid (vapor or gas)
Pu = Pyj = Pu8? A (8)
Under equilibrium conditions, assuming the interface is axisymmetric,

af
1 0
- pp) - (Lplgf + o<~ 2 - =0 (9a)

r Or [l +<%)2']1/2

Since the origin is at point I (Fig. 1) where f = 0, then

- (p
vy

L3
1 0 or
+(57)

The interface kinematic condition (Ref. 12, pp. 7 and 9) is

N . .2 , 2-1/2 :

8L _9¢[, , (% d ‘ 10
Bt_an[l+(r) +(r89)] on Fe (10)
On the wetted wall,

9% _ on W (11)

on

The solution is governed by Equation (3) subject to boundary conditions,
Equations (7), (10), (11). In addition, there is a contact angle condition,

the linearized form of which will be given later [ Eq. (24)].




Linearization

In the formulation of problems, only the free surface conditions
are nonlinear,.

For small oscillations, the problem can be linearized.
Subtracting Equation (8) from Equation (7), the linearized interfacial

dynamic equation can be easily shown to be

L oh oh
3% 1 8 Br 19 86
P Y - (Ap)gh t0o r Or

L2
[H(gfr)zr/z L2 90 {1+(—§ir)2]1/2

+ pXow“x cos (Nwt) + p?owzy cos (Nwt) + piowzz cos{Nwt) = 0

(12)

where the definitions of h, f, and other quantities are shown in Figure 1.

In this report, the investigation will be limited to lateral excitations in
which §, =2, =0and N =1, Let

o
1

$ sin (wt) )

h =h cos (wt)

Equation (12) yields

;20 2h

- - 1 9 or 1 o 00
- puwb - (Aplgh + o T 5o 51372 ' L2 00 VIV

1+(— 1+(—)

or or

+ piowzx =0 (13)

The linearized form of Equation (10) is:




dh _ 3¢ ar /e
5t n [l *(57) ] (14)
Let

Equations (14) and (15) yield

[\Y]

)
Dl
= e
QJIQJ
H | MR

) | (16)

1+(

The pressure under equilibrium conditions is

Po = Py +’0(K1 +Kk,) - pef on F (17a)

On the wall, the time independent pressure is
Po = P] - P82 on W as well as on W (17b)

The perturbation pressure on the wall from Equation (4) after subtracting

Equation (17b) is

= 90 . o .2
= - p=— +x0w

o ot x cos (wt) on W (18)

=p-Pp

Now, the contact angle correlation will be discussed. The contact

angle, GC’ is the angle between the wall and the tangent to the exact free

surface, Fg, i.e. (Fig. 1)




z
~6,
¢ ! Fe (free surface)
) C
o N / e
I
"W L 6+ 6 T
' hir.6) , b
Ur9 Vi) I fav
f ~5 - T An
" A av
Le |
I
W (wall) l l
y
)
C
r
8
L X

Figure 1.

Some Nomenclature



Oc = (v - Oy) - Op (19)
The perturbation equation states
1 - o 1
0¢ = 9F (20)

The directional cosine of the normal to the exact interface with respect

to the vertical axis is

! 1
= + = i
cos (0 + OF) 1+(8f)2 1+( )2 cos 9F+9C sin GF
or

QJIQJ
(2T Lana

Since
_ Qf_)
cos O = or
2
] +(?i)
or
then
£ 1
sin 68, = 21
F : (.@f..) _ (21)
+ or

The plus sign is taken for convex interfaces viewed from the fluid.

The perturbation contact angle is then

oh
1 1 or

OF “oin 0 o1 \2 (22)
1+(-—)
or




Presumably, the perturbation contact angle would increase with the
normal velocity of the interface, and it may depend on the location of
the contact point.

Thus, one may assume the hysteresis condition

v 8¢
9c =715, - 7eh

(23)
Making use of Equation (16), Equations (22) and (23) yield
dh w ~ ~ . of )2 oz
5t 71 h +v,h | sin OF 1+ (ar = vh (24)
(57)
1+ —
or
Nondimensionalization
Let
R:Z,Z:E,in,xoz_(_)_,l:l_ a_gH,d;“'\/gaQ
a a a a w2
U = 4

and the Bond number

N =& p)ga’
B o

(25)
The interfacial dynamic equation [Eq. (13) X 2

2
e ]becomes:
o./ga




g O oH
10 oR L L2 80
oR oR

Q)Za

+ NgH+ Q2@ = X_R cos 0 * Q% /=

The interfacial kinematic condition equation states that

—I"IT—ai 1+(8F)2; n*¥ =

on¥% B

0

n
a

The contact angle hysteresis condition reduces to

2
a_H:rH: rl,\/;
JoR g

The wetted wall condition is

od
on*

and the governing partial differential equation is

v2® = 0

#*From here on, V represents gradient nondimensionalized by a.

10
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(30)%
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CHARACTERISTIC FUNCTION METHOD

Properties of Characteristic Functions

The program for an arbitrary axisymmetric tank will be solved
by the characteristic function method. The characteristic function

satisfies the Laplace equation
V2w = 0 (31)
subject to the condition that

¥

P =0 on W - (32)
n
and
-—:‘I; =\ on F (33)
n

For a general tank, the characteristic functions may not and need
not be the normal modes. From the divergence theorem and Equations (31),
(32) and (33), it can be easily shown that the following orthogonal condition

holds:

1
f‘I’i\I/j dS = x _)\jf[)\i\lfi\llj - }\J\I/J\Ill] ds
F

F
1 o AV
=t v — - g;2—1l14s

Ny f [ Jgn* ~ " lgnk (34)
F+w

YISV f[V (V) -V - (FVE5)] =0, i1 £
1 Jv




Let

on F (35)

One has an alternative form

f\If-K-dSz 6:; f\y-de 36
2 7% ij £ Y% (36)

which was given in Reference 8.
If the velocity potential is expanded in terms of characteristic

functions, one has

o ZZ CJ\I/J (37)

From Equations (35) and (27),

-

H =) G l-qufj 1+ ( %g_)z] = CiK; (38)

which is again a familiar equation given in Reference 8.

it is important to note that the characteristic functions and their
derivatives can be calculated by finite difference method (Method II,
Ref. 15) to evaluate integrals and constants entering the force and

moment formulas given later. *

*Upon completion of the present report, the following paper by Gordon
C. K. Yeh was published in which the Ritz Method was proposed to cal-
culate the characteristic functions: '"Free and Forced Oscillations of a
liquid in an axisymmetric tank at low gravity environments, ""J. Appl.
Mech., Mar., 1967, This paper does not give an expression for the force

response nor any mechanical model.

12



Free Oscillations of an Arbitrary Axisymme;cric Tank
To include the breathing vibration in an elastic tank at the same

time, it is assumed that
® oc cos (m0) ) H oc cos (m0) (39)

The interface dynamic condition, Equation (26), for X0 = 0 reduces to

ro 5
- —li( OR —)— m"H +NgH+ 2%8=0
ROR sF1273/2 5 27172
[1+(——)] R[H(L)]
R 9R

(40)
Application of the series expansions. given by Equations (37) and (38) and

the Galerkin method yield the following matrix equation:

m?2
{(F 0] - ) + 27 Lo, ] # Mg (60, ) - 220550} L) =0
- (41)%

where the matrix elements are given in Tables 1 and 2.

Equation (41) takes the form

{[A] - QZ[I]} [C] =0 (42)

The eigenvalue problem of Equation (42) can be solved on a high speed

computer. The lowest few eigenvalues yield the lowest few natural

OKm.
*Itis assumed that_aT"‘l = 'K,  corresponding to the constant angle
j

condition, Equation (28).




bk:

dk:

ei;:

V6—

ij

TABLE

- Tex cy (K..))
kX kJ mJ I

J

see Equation (56)

see Equation (58)

1. TABLE OF CONSTANTS

R ‘11
2
F(%)II (g—f‘:)n ' (2—5)11 [1 ' (g_lz)n
21372 ¢ 271/2
() ()]

14




TABLE 2. TABLE OF INTEGRALS

1
g. = f R¥,__ dS
J o‘rzn- F mJ

j

aF
k; = l fxxfm 9R das
a2 F J IF\2
arzn-:f 7 .dS
J i J

1 9F\ 2
B =—f 1+ ——) ¥ ¥ dS
Tij ofy (5%) " o, ™

) . 0y, 9%,
Ym.. = ds

ij o2 5F \2 oR oR
m; 1 + (28
iF (o)
3F 9%F ‘
2 r e\ OV .
+2 OR oR T i,g —2ilgs
mj 3R mj J9R

(2E 82F)2
dR 2
+ 9R T, T dS
272 tod
1+(8_F)
oR
= f Lo w_ ds
€ = 5 -
m.: 2 2 m m
1] amj F R 1 J
.
H.zLI qu,-[R+wa_w RdR d6 if Z - W(R)=0 or W
J 0_2 4 J aR_ . a
1 [— 3GT o T
i, = T Z+G ZX21Gdaz 4o if L -G(Z)=0 or W
H5 02 f my | 9Z | a (z)
m.
j W

15



frequencies, and the corresponding eigenvectors yield the corresponding
normal modes.

Forced Lateral Oscillations (Rigid Tank)

First, solutions will be obtained by direct expansions in character -

istic functions. Let

) =Zc~1j\pmi cos (mb6) (43)
j

H =Zaij' cos (m8) (44)
;i j

For lateral oscillations of a rigid axisymmetric tank, m = 1. Analogous
to Equation (41), Equation (26) and Galerkin's method yield

{181 +a2ul} @) = X0 /%2 02 [ fus] (45

A =—vai

2
i * Ymy; + m Emij + Ng ﬁmij (46)

j j

The coefficients aj's can be obtained by matrix inversion; however, to
avoid a limiting process at zero gravity, the following nondimensional

velocity potential and surface displacement are introduced:

:

2

w a

¥ = _% = £ 3 =z§j\llm_ cos (m®) (47)
wa j J

16



*—.}3__ g = e
h =2 H Ze-K _cos (m®) (48)

where, from Equation (45),

7] = /) - “2{- (a1 + 2211} () (49)

Since in the neighborhood of a natural frequency the determinant

[A] - 22[1]| approaches zero, the corresponding matrix in Equation (49)

may be ill-conditioned. Therefore, a-s an alternate, the solution will be
obtained by expansion into normal modes. In the neighborhood of first
natural frequency, one sléshing normal mode may be sufficient. Near
higher modes, one resonant mode plus the fundamental mode may be
sufficient as is the case for sloshing under normal gravity.

Let the kth normal mode be

& =chj\llj =chj\llmj cos (mb) (50)
J J

T X Y >
) N B
J J

where cp . are determined in free oscillations. Then, expansion in normal
J

modes yields

® = deq’k dez ;7 Z | (52)

J

17



where

aj = zckjdk
k

By definition of normal modes, Equation (26) yields

2
Zd[§2¢ +Q®]—X92chose
g

By Galerkin's method,

_XOQZ ‘*ﬁ
1
d = g — g

The corresponding velocity potential is

¢ = - waZX @, sin (wt)
zgz o2

where
w O L
€k -Z 2 “k;8j
J

The corresponding surface elevation is

(53)

(54)

(55)

(56)

(57)

(58)

18



sk 2
ekQ

2 2
k Qk‘Q

h=-aX, Hy cos (wt)

while

Force on the Tank

The divergence theorem will be used repeatedly to convert the

19

(59)

(59a)

surface integral on the (mean) wetted surface, W, to a volume integral

minus the surface integral on the (mean) free surface, F. The force due

to pressure on We - W will be evaluated las_t.

The force due to hydrostatic pressure is

by
n

w

§£cos 0

- -f pgz cos (n, x) a2 ds ;

The force due to inertia is:

) £(R) oR
F[Pg '\[-I- (%E_)Z

cos (n, x) = %}—(-
n

—{f pgv (ZvX)a3 dav -fF pgz cos (n, x)a2 ds}
v

1+ (%g)z aR dR d6 = 0



H'j)

=f PR, wlx cos (n, x) a2ds
W

R =~ cos 0
= pRg w2 a3fv . (XYX)dV -f x . _—0R = a3 ds
or
\Y 1+(——)
F oR

pXoa4w2V + pXow2a41rv1
Due to impulsive pressure, similarly,

F
X3

4, -pw cos (n, x) a% ds

1]

2,2 ( 2
- pw ®d. cos » X)dS QX
P E QZ QZ Kk €° (n, x) (- o)

Q22X _pu2al Ttk
k Qi -92

- ~ 1
- % .2
tk =ep E ij(kj + Kjgj)za ;
J

In deriving Equation (61), use is made of
o ov
f —Lav f v (XVE)av =f X —ids = 1y, gjafn'

V8X v F on 273 j

Using Equations (4) and (9b), the linearized force on the wetted

W _ - W is:

€

(60)

(61)

(61la)

(62)

surface

20
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Fy =f p cos (n,x)aldS = cos (wt)‘lr[puI + oKy

- 2Nz
ngHa]a Zeij.H
j J

=F, +F, +F 63
X5 %6 *7 (63)
P
= 2,4 o 912<
FX5 = (akj) pw©a®X, 2—2+ Z—Z—-— (64)
Kk $2y k(w_k) .
W2
£ \p
= 2.4 P8 2.4 (“ia) )
Fx6= - pwTa XOFIIZ—2—~pw a XOFII —2 (65)
k @2 (‘ﬂs)l
w2
_ 2 4 by P
Fy, = pu'a X, Zbkpk +y e (66)
. MEIP
\wZI

Next, the direct force due to surface tension will be evaluated.

Let the surface tension be pulling downward. The directional cosines

of the surface tension at the wall with respect to cylindrical coordinates

are (Appendix A)

-1 _ (67a)

l—
>
OF 9F oh
'\/H(aR) * 23R 3R c

~
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b3 2
I———ah (a—]’: + 86 [1 + (BF) D
~ 90\ 9 oz R
m = > = (67h)
V(B R
o] R OR C
9F . oh*

2 %
,\/1 ¢ (2E)7 4 228 o0t
oR JR 9R C

Then, using binomial expansion and integration,

F Ef_’f-(?cose-_‘ésine) dsrd6
X ~" rd6
T
~ 1+ a_l‘:)z_il‘:____ah*
:_f ad{:ose JR dR OR +
L (22)°]
0 3

'@__F_+a_c[1+(a£>2]}@*‘
+ sin o 2OR 0Z OR 86 }Rde (68a)

= - nacvézej(Km ) (68b)
j
b
= -X a4w2v ZP—k-+ Z—Eﬁ——— (68c)
- oP 6 Q2 2
< (3)
2
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The moment about y-axis can be obtained similarly by integration

My ={, [pz cos (n, x) - px cos (n,z)]azds-f_”fx_f- §rds
' C

Due to limitation of space, details of the evaluation will be omitted. It is
noted, however, that not all integrals can be converted to integrals on the
(mean) free surface; consequently, values of the characteristic functions
on the (mean) wetted wall need be calculated in the finite difference
program.

To summarize, the total force and moment are

2
- Q
Fy = pXg wladv + LASTD: 9N wtal + pw2a4X z-—z—
w of -2
(%)
2
wfa
- pw‘?-a‘}X0 Z——IZS—- - pw2a4XOFHZ——2———-
k “k? k{ %k 1
wl
o2
b Q
+ pa4”<..>2v4 Z*—l—(—+ — R
2 2
we
b1 Py
+ X_pat Zbkp Z —= (69)



1 k2
+ Frp|Fop +
H[ H (&) }Z o
11 U2
P
¥ bk ap
- pX w2a5v5 ——+z
° kg2 k /2
2
w
i b, P
5> g 1 kP
- pX wla [FII+——(§V1) ]{%bkpk +§_~_—wﬁ o (70)
w7

The contained constants are given in Table 1.

24



MECHANICAL MODEL

The mechanical model without damping consists of a series of
spring-masses located at different heights. Let the kth mass be my., the
kth spring constant be mkwﬁ, and the height of kth mass-spring be zj.

The force and moment due to the equivalent system are (Ref. 16):

m X m O m
Fo=XlaMpd 2+ Y K4 Sk (71)
w
z mk Zk X my

M, = X w“aMph 2.2 —= X Tk 8

y © © Mg hg kZI Mg hg kZ Mg wﬁho

(F)l(2) + (=]

oo MF wia

(72)

For convenience, m, can be obtained from several '‘masses!" at different

heights, i.e.,
my = z mkn (73a)
n
myzg = kanzn (73b)

n

25




It is found from comparing Equations (68) and (69) with Equations (71),
(72), and (73) that

_ 3 kg FribkNp

= + + + =ty
Mp Mp Mg Mg Mg af

+ vy _1; + b Pk, k=1,2, (74)
&

Zk o 1), [ate g 7. FuhNs _a_(F
hy mp | S lho te 1 o2 2 h, II

Mg

1
- b P (F + >—+—g— 75
kk[ II (?_Vl) h_ wﬁh (75)
oR /11 ©
where
e i

The rigid mass m_ is given by

(77)



It is probable that

M =Fp ) ==t Ve ), = (78)
k wia k 9 :

(which cannot be proved in general) so that

which implies that the total liquid mass equals the total mass of the

model. The location of the rigid mass is

(0 0] QO
z m z m
Zo___1 iZc.g.-Z—L—k--Z—k—g—
ho (mo) h, k=1 MF hy  kZ1 MF ofn,
Mg
a 1] X FibgNp
+B—[FH+ swy | Fur 2 2
® p
a a k a 1
2, - 2y —-—[FH+ ] b, P
o "R s 2y he L (] N
II

(80)

It is probable but cannot be proven in general that:

27



oo
h Fib N
o 1 IT"k™'B
V2 = ‘[FII+(aw) ]FII > o
k=1 k
aR /g
+vg Pyafp 41 D b P
2 h, L' raw k- k
k o (——) k
aR /11
m
+z < 2L (81
MF w?h
ko
then
mozonFZc.g. - z my zp (82)*
k=1
To refer all heights to the center of the bottom, let 2~z zav - F .

* If Equations (79) and (82) do not hold, then the mechanical model cannot
duplicate the statical properties of the liquid.

28
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CONCLUSIONS

The force and moment exerted on the tank have been obtained by
using characteristic functions, and a possible meéhanical model is
introduced in the present report. The evaluation of eigenvalue and
eigenfunctions, however, requires a finite difference computer program
which has not yet been written, Such a program is needed if comparisons

of the present theory are to be made with experiments.
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APPENDIX A

Directional Cosines of the Surface Tension

Let £, m, and n be the directional cosines of the surface tension
at the wall (on contour T) with respect to the cylindrical coordinates
r, 0, z.

Let the free surface geometric equation be
z - {{r,08) =0 on F

The directional cosines of the normal to the free surface are

9t 3
T or

Vi@ &) @ ) @)

First, the surface tension lies in the plane of the free surface at T; thus,

(- 5)1e (- Fg)mneo

Next, we shall find the tangent vector T of the contact curve T which is

defined by
r=RH+6(9) , 606 |, z = t(r, 6)

The element of the tangent line is

-~

dr + 6 r do + z dz

-
—_ —
r

ds =




then

ds - -*;
- rdf
" =

VERER VTG

95 3 . 95 oLy
-rTe1+m+(;———+ )n-O

Therefore, neglecting the second order terms when comparing with

unity, one finds

Toar ot sagy® 85 85 )
m‘[raear‘(ar) 796~ ¥06 ) |

Third and last, the relation of directional cosines states that

m2+n2+12=1

Again neglecting the second order terms when comparing with unity, one
finds:
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) for small interface motion.

N

since 6% = §/a = (h*



